Preparation of 5-Bromotetronates [4-Alkoxy-5-bromo-2(5H)-furanones] and a New Concept for the Synthesis of Aflatoxins and Related Structure Types. Tributyltin Hydride versus Palladium-Promoted Intramolecular Hydroarylation.*

H.MARTIN R. HOFFMANN, BORIS SCHMIDT, and STEFAN WOLFF Department of Organic Chemistry, University of Hannover, Schneiderberg 1 B, D-3000 Hannover, F.R. Germany

(Received in Germany 18 April 1989)

<u>Abstract</u> - The coupling of suitably functionalized o-iodophenols (e.g. 6) with 4-alkoxy-5-bromo-2(5H)-furanones (5-bromotetronates) (10a-e) gave precyclic aflatoxin M_1 A-C building blocks (7, 14, 17c). Two cyclization modes for obtaining the ABC-moiety were investigated and compared. Whereas the Bu₃SnH-induced reaction worked well for simple model compounds, it failed for the more functionalized compounds. The palladium-mediated procedure allowed the synthesis of potential aflatoxin M_1 precursors such as 18c. An improved procedure for obtaining O-alkylated tetronates (9a-g) is described. The tetronates were converted into 5-bromotetronates (10a-e, h) under controlled free radical conditions. For example, the narthogenin precursor 10a was prepared to the exclusion of undesired isomer 11, in 62% yield. Finally, other benzoannulated heterodiquinanes, e.g. a desoxyeserolin precursor 24, were obtained by both cyclization procedures in good to excellent yield.

Introduction. Current Status of Aflatoxin M Synthesis.

Of the various aflatoxins known¹ the M-series (milk toxin) is important from several points of view. There is a general need for studies of biological activities and metabolism, as the role of aflatoxins as agents of foodborne diseases of humans and animals is clearly recognized. There is also a need for these compounds as analytical standard, for example in the dairy industry.^{1°} The high price of aflatoxin M_1^{1d} and aflatoxin M_2^{1d} reflects the difficulties of obtaining and isolating these metabolites from natural sources. By virtue of its angular hydroxy group at C-9a, the bicyclic acetal grouping and oxygen functionality, the aflatoxin M-series represents a considerable synthetic challenge. In fact, there are only two syntheses of aflatoxin M_1 , published some time ago and due to Buechi. The first synthesis is linear (A + B \rightarrow AB \rightarrow ABC),² whereas the second is convergent (A and C are combined to ABC in one step).³ Rings D/E have been constructed by a von Pechmann reaction.²⁻⁴ Buechi has pointed out that the

1 aflatoxin M₁

2 aflatoxin M₂

synthesis of aflatoxin M_1 "is not an organic synthesis type of preparation".³

Our own approach consists of coupling two suitably functionalized A-ring and C-ring building blocks to the acetal AC, which is then cyclized to ABC in the key step.

Regiocontrolled Differentiation of the Hydroxy Groups in Phloroglucinol and Regiocontrolled Electrophilic Iodination.

The selective mono- and dialkylation of the hydroxy groups in phloroglucinol is difficult. We therefore started with bis(benzenesulfonyl) derivative^{5,6} **3** which is readily obtainable by monodesulfonylation of the tris-(benzenesulfonyl) derivative. Monobenzylation $(3 \rightarrow 4)$ and another selective monodesulfonylation gave **5**, which was indinated to give **6**. As is turned out, the sulfonyl group in **6** was also useful in the steps to follow. The group appears to direct iodination of 5 into the para position preferentially $(5 \rightarrow 6)$. More generally, it reduces the electron-density of the phloroglucinol ring. A deactivated phloroglucinol was important in the palladium-mediated cyclization: In the absence of the sulfonyl group, e.g. with 3-benzyloxy-5-methoxy derivative 7 the cyclization did not take place (see also Scheme 5 below).

7 R=OCH₂CH₂SiMe₃

Preparation of C-Ring Precursors.

Previously, O-alkylated tetronic acids 9 were prepared by S_N2 -alkylation of tetronates.⁷ Very recently, Zimmer et al.⁸ have condensed tetronic acid 8

Table 1. Preparation of O-Alkylated Tetronic Acids 9 and Conversion into 5-Bromo-2(5H) furanones 10

8

	1 0 7 1 0	
	9	

l	0	
-	-	

9	R-	9 Yield [%]	10	10 Yield [%]
9a	СНз	81 <i>ª</i>	10a	62
9b	CH ₂ =CHCH ₂ CH ₂	91	10b	25
9c	$CH = CCH_2 CH_2$	81	10c	31
9đ	$Me_3SiCH_2CH_2$	64	10d	83
9e	$CH_3(CH_2)_4$	91	10e	72
9f	(CH ₃) ₂ CH	28		
9g	$(CH_3CH_2CH_2CH_2)_2CH$	27		
			10h (R=Ac)	90

 $^{a}H_{2}SO_{4}$ conc., rt, 15 h (no benzene).

with alcohols in the presence of excess conc. H₂SO₄. We have found it ad-

vantageous to use *catalytic* amounts of acid and ca. 3 equivalents of alcohol, and to remove the water formed by azeotropic distillation with benzene. Secondary alcohols appeared to react less satisfactorily by our procedure.

Bromination of the butenolides with N-bromosuccinimide/azo-bis-isobutyronitrile in CCl_4 occurred regioselectively at C-5, giving bromobutenolides 10. Polar impurities including moisture and acid had to be excluded, because they tended to promote ionic reactions. Care had also to be taken during workup. We succeeded in isolating the TMSE (Me₃SiCH₂CH₂) protected butenolide 10d as a crystalline solid. Previously, Reffstrup et al.⁹ reported the bromination of 4-methoxy-2(5H)furanone (9a) with NBS in CCl_4 , obtaining the 3-bromo derivative 11 and the desired 5-bromo derivative (10a)

Scheme 2

in only 9% yield. We have found that exclusion of moisture and using anhydrous NBS (after recrystallization from water and prolonged drying) under controlled free radical conditions gave the 5-bromo derivative **10a** in 62% yield.

4-Alkoxy-5-bromo-2(5H)furanones (10) can be hydrolyzed to 3-alkoxy-4-hydroxy butenolides. For example, 5-hydroxy-4-methoxy-2(5H)furanone (13)

13

(narthogenin, from 10a) is the aglycone of narthecide, which shows antibiotic activity.⁹ O-Acylated derivative 10h could also be obtained from 4-acetoxy-2(5H)furanone. However, not all O-protecting groups tolerated the NBS bromination. For example, the protecting group in 9 came off for R = OCH₂Ph, CH₂SMe, THP, and MEM (-CH₂OCH₂CH₂OMe).

Intermolecular Formation of Acetals (A+C \rightarrow AC).

Coupling of the functionalized phloroglucinols, e.g. 6 with bromobuteno-

lides 10 was carried out advantageously under solid/liquid conditions $(K_2CO_3/acetone)$. Even bromobutenolides which are prone to transesterification, such as 4-acetoxy-5-bromo-2(5H)furanone (10h), could be joined with 6 to the corresponding acetals, i.e. 14.

Scheme 3

Intramolecular Coupling (AC \rightarrow ABC).

In work carried out concurrently with ours, Snieckus et al.¹⁰ have recently reported the Bu₃SnH-induced cyclization of a number of AC acetals (15a-c). Whereas the simple model 15a was reported to cyclize to 16a in 42% yield, the more *highly* oxygenated bromophloroglucinol derivative 15c was reported to cyclize to 16c in 74% yield!¹⁰ In our experiments, the opposite trend was generally followed: the more oxygen is present, the more difficult the Bu₃SnH-induced cyclization becomes¹¹ (cf. 15d vs. 15e, and also work described below). The oxophilicity of tin seems to interfere.

Table 2. Bu₃SnH-Induced Cyclizations of 15a-e.

15	R'	R"	х	16 Yield [%]
a	OMe	н	I	42 ^a
ь	MeOCH ₂ O	н	I	79 ^{ª, c}
С	MeOCH ₂ O	MeO	Br	74 ^{ª, c}
đ	н	н	I	86 ⁶
е	OCH 2 Ph	OSO_2Ph	I	~ 28 ^b

^aRef. 10; ^bref.11; ^ccf. our discussion in the text.

Furthermore, in our work¹² bromophenol ethers (cf. 15c, ref. 10) were always more difficult to cyclize than the corresponding iodoaromatics. We therefore suggest that in the absence of further experimental detail, the report by Snieckus et al.¹⁰ be regarded with reserve (cf. below). Entry into Aflatoxin M Building Blocks. Model Studies.

In contrast to phloroglucinol derivative 15e, the simple iodoaromatic ethers 17a could be cyclized with Bu₃SnH to 18a in over 50% yield. How-

ever, all experiments to demethylate ether 18a to the tertiary alcohol (cf. ref. 13) were not successful. For this reason we turned to the TMSE (Me₃SiCH₂CH₂) protecting group. A series of experiments with 17b gave the desired 18b and also tin-containing byproducts 19 and 20, depending on the reaction conditions.

17ь

Initial Concentration [mmol/1]	Bu₃SnH [mmol/l]	18b 19 Yield [%]		20
6.7	7.3ª	_	-	40
10	11 ^b	53	4	9
10	20 ^c	50	-	-

³AIBN 20%, Δ; ^bAIBN 2%, hν; ^chν.

Because of the difficulties with tin we turned to a transition metal-mediated ring closure. We were pleased to find that the palladium-induced intramolecular hydroarylation¹¹ could be improved further and also applied to sterically more hindered C-ring precursors containing oxygen at the cyclization site. After model experiments with **17a**, **b** the protected phloroglucinol derivative **17c** was cyclized to the potential aflatoxin M₁ precursor **18c**. All three compounds **17a-c** gave similar yields (57-58%) in this step (Table 4). Replacement of the sulfonyl group in **17c** by a methyl group

<u>Table 4.</u> Palladium-Promoted Cyclizations of **17a-c** to ABC-Building Blocks **18a-c**.

18 Yield [%]
57ª (39 ^b)
58 <i>°</i>
57 ^{ª, c}

^aPd(MeCN)₂Cl₂ (10 mol%), NaOCHO (1.4-1.8 equiv), $nBu_4N^+Cl^-$ (ca. 1.4-1.8 equiv), abs. DMF, 50-80°C; ^bPd(MeCN)₂Cl₂ (4 mol%), Et₃HN⁺OCHO⁻ (2.2 equiv), DMF, 50°C; see ref.11; ^cYield with respect to recovered **17c** (ca. 25% conversion; 55% yield at 56% conversion).

(cf. 7) resulted in complete failure on attempted cyclization. Furthermore, attempts to cyclize 17c with Bu₃SnH were not successful. Comparison with 17b (Table 3) confirms our assumption that the high oxygen content of 17c is once more responsible for the failure of the desired 5-exo-trig reaction (cf. above and Table 2). The cyclization fails also, if ring A is too electron-rich (Scheme 5).

Other Benzoannulated Heterodiquinanes.

Structurally related heterodiquinanes have been built up in similar manner (Scheme 6). Coupling of o-iodoaniline (21) with acetylated 5-bromo-4-me-thylpyrrolidin-2-one (22) gave aminal 23, which was cyclized with Bu₃SnH.

24

25

Scheme 6

The intramolecular hydroarylation with catalytic amounts of palladium in the presence of formate anion gave the desired tricycle 24 in reproducible 97% yield. Tetrahydropyrrolo[2,3b]indol-2-one (25) with its quaternary carbon C-3a is a model for physostigmine¹⁴ (26), an indole alkaloid isolated from calabar beans.

Experimental

Preparation of O-Alkylated Tetronates. Procedure for 9b, 9c and 9e. 4-[3-Buten-1-oxy]-2(5H) furanone (9b). A solution of 4-hydroxy-2(5H) furanone (500 mg, 5 mmol), 3-butyn-1-ol (1.1 g, 15 mmol), p-toluenesulfonic acid (50 mg) in anhydrous benzene (50 ml) is introduced into a 50 ml round-bottomed flask equipped with reflux condenser and Dean-Stark separator and refluxed for 7 h. After cooling down to r.t., the solvent was evaporated in vacuo. The resulting yellow oil is purified by chromatography (EtOAc/PE 3:1). The light yellow oil crystallized over several weeks at -15°C, giving colorless prisms. Yield 700 mg (91%), mp 101-103°C. IR (cap. film) 1775s, 1746s, 1626s, 1321s, 1152s, 1053s, cm⁻¹. ¹H NMR (200 MHz, CDCl₃) & 2.54 (ddt, ${}^{3}J_{=8}$, ${}^{4}J_{=1}$, 2 H, H-2'), 4.13 (t, J=8, 2 H, OCH₂CH₂), 4.64 (d, 2 H, ${}^{4}J_{=1}$, H-5), 5.13 (dt, ${}^{3}J_{trans}=10$, ${}^{4}J_{=1}$, 1 H, H-4'), 5.15 (t, ${}^{4}J_{=1}$, 1 H, H-3), 5.16 (dt, ${}^{3}J_{cis}=18$, ${}^{4}J_{=1}$, 1 H, H-4'), 5.73 (ddt, ${}^{3}J_{trans}=10$, ${}^{3}J_{cis}=18$, ${}^{4}J_{=1}$, 1 H, H-3'). 13 C NMR (50 MHz, CDCl₃) & 32.75 (t, C-2'), 67.82 (t, C-1'), 71.79 (t, C-5), 88.85 (d, C-3), 117.85 (t, C-4'), 133.25 (d, C-3'), 173.40 (s, C-4), 179.68 (s, C-2). MS for C₈H₁₀O₃ (154.1652) m/z 154 (M^{*}, 6), 121 (7), 120 (7), 99 (M^{*}-C_4H₇, 11), 83 (6), 69 (15), 55 (100).

 $\frac{4-[3-\text{Butyn-1-oxy}]-2(5\text{H})\text{ furanone (9c)}}{\text{prisms (81\%), mp 50-52°C. IR (cap. film) 3290m, 3130w, 1770s, 1745s, 1625s, 1370s, 1240s, 1155s, 1050s, cm⁻¹. ¹H NMR (200 MHz, CDCl₃) & 2.07 (t, ⁴J=2.5, 1 H, H-4'), 2.70 (dt, ⁴J=2.5, ³J=6.5, 2 H, H-2'), 4.14 (t, J=6.5, 2 H, OCH₂), 4.86 (d, ⁴J=1, 2 H, H-5), 5.13 (t, ⁴J=1, 1 H, H-3). MS for <math>C_8H_8O_3$ (152.1494) m/z 152 (M⁺, 5), 124 (5), 123 (25), 107 (6), 96 (17), 69 (45), 53 (100).

 $\begin{array}{l} \underline{4-[2-(\mathrm{Trimethylsilyl})\mathrm{eth}-1-\mathrm{oxy}]-2\,(5\mathrm{H})\,\mathrm{furanone}\quad (\mathbf{9d})}_{1} \quad \text{is obtained as shining leaflets, 1285 mg (64%), mp 91-93 °C. IR (KBr) 3100w, 2960m, 1775s, 1740s, 1630s, 1450s, 1335s, 1250s, 1180s, 1155s, 1070m, 1040s, 880s, 840s, cm^{-1}. \ ^{1}\mathrm{H}\ \mathrm{NMR}\ (200\ \mathrm{MHz},\ \mathrm{CDCl}_3)\ \&\ 0.08\ (\mathrm{s},\ 9\ \mathrm{H},\ \mathrm{CH}_3),\ 1.16\ (\mathrm{m},\ 2\ \mathrm{H},\ \mathrm{SiCH}_2),\ 4.16\ (\mathrm{m},\ 2\ \mathrm{H},\ \mathrm{OCH}_2\mathrm{CH}_2),\ 4.64\ (\mathrm{d},\ ^4J=1.5,\ 2\ \mathrm{H},\ \mathrm{H}-5),\ 5.17\ (\mathrm{t},\ ^4J=1.5,\ 1\ \mathrm{H},\ \mathrm{H}-3). \ \mathrm{MS}\ \mathrm{for}\ \mathrm{C}_9\mathrm{H}_160\mathrm{_3Si}\ (200.953)\ \mathrm{m/z}\ 174\ (3),\ 173\ (5),\ 172\ (25),\ 159\ (3),\ 158\ (5),\ 157\ (40),\ 129\ (15),\ 101\ (60),\ 99\ (29),\ 74\ (8),\ 73\ (\mathrm{TMS},\ 100). \end{array}$

 $\frac{4 - [Pent - 1 - oxy] - 2(5H) furanone (9e)}{IR (cap. film) 1770s, 1745s, 1630s, 1365s, 1320s, 1235s, 1150s, 1050s, 970s, 880s, 800s, cm⁻¹. ¹H NMR (200 MHz, CDCl₃) s 0.94 (m, 3 H, CH₃), 1.40 (m, 4 H, CH₂), 1.80 (m, 2 H, OCH₂CH₂), 4.06 (t, ³J=7, 2 H, OCH₂), 4.66 (d, ⁴J=1, 2 H, H-5), 5.09 (t, ⁴J=1, 1 H, H-3). MS for <math>C_9H_1_4O_3$ (170.2078) m/z 171 (1), 170 (4), 169 (41), 154 (2), 141 (2), 137 (3), 112 (38), 101 (22), 64 (17), 44 (100).

<u>4-[1-Methyleth-1-oxy]-2(5H)furanone</u> (**9f**)⁸, 22 mg (28% with respect to 55% conversion), mp 42-43°C. Spectroscopic data identical with literature. MS for $C_7H_{10}O_3$ (142.1548) m/z 143 (5), 142 (61), 101 (83), 69 (53), 43 (100).

 <u>Preparation of Bromobutenolides. Photochemically Induced Bromination.</u> 4-Methoxy-2(5H) furanone (9a) (115 mg, 1 mmol) in anhydrous CCl₄ (10 ml) under N_2 is injected into a photoreactor containing finely powdered, colorless NBS (190 mg, 1.05 mmol). The reaction mixture is cooled externally with ice and irradiated for 6.5 h with a mercury high pressure lamp (Philips HPK 125 W). The resulting succinimide is filtered off, and the residue is washed with cold CCl₄. The combined filtrates were freed from solvent under vacuum and chromatographed (EtOAc/PE 4:1). Apart from some educt 9a (10 mg) the desired product 10a is isolated (110 mg, 62% with respect to recovered starting material). Spectroscopic data identical with literature.⁹

Thermally Induced Bromination. 5-Bromo-4-[3-buten-1-oxy]-2,5-dihydrofuran-2-one (10b).

 $\begin{array}{c} \underline{2-\text{OHe}} (10D). \\ \hline 1\text{H} \ \text{MMR} \ (200 \ \text{MHz}, \ \text{CDCl}_3) \ \& 2.6 \ (\text{tdt}, \ {}^3J=7, \ {}^4J=1, \ 2 \ \text{H}, \ \text{H}-2'), \ 4.18 \ (\text{t}, \ J=7, \ 1 \ \text{H}, \ \text{OCH}_{\text{A}}\text{H}_{\text{B}}), \ 5.18 \ (\text{td}, \ {}^3J_{\text{cis}}=10, \ {}^4J=1, \ 1 \ \text{H}, \ \text{H}-4'), \ 5.20 \ (\text{td}, \ {}^3J_{\text{trans}}=18, \ {}^4J=2, \ 1 \ \text{H}), \ 5.22 \ (\text{s}, \ 1 \ \text{H}, \ \text{H}-3), \ 5.84 \ (\text{ddt}, \ {}^3J_{\text{cis}}=10, \ {}^3J_{\text{trans}}=18, \ {}^3J_{3', \ 2'}=7, \ 1 \ \text{H}, \ \text{H}-3'), \ 6.62 \ (\text{s}, \ 1 \ \text{H}, \ \text{H}-5). \end{array}$

<u>5-Bromo-4-[2-(trimethylsilyl)ethoxy]-2(5H)furanone (10d).</u> 4-[2-(Trimethylsilyleth-1-oxy]-2(5H)furanone (775 mg, 3.80 mmol), colorless, finely divided NBS (780 mg, 4.2 mmol) and AIBN (10 mg, mmol) are suspended with anhydrous CCl₄ (40 ml) in a 50 ml round-bottomed flask. The flask and reflux condenser are flushed with N₂ for 10 min, and the suspension is refluxed for 2 h under N₂. Initially, the color of the supernatant solution changes from yellow to deep-orange, and again after 2 h the color turns light within 5 min. The color changes and the floating succinimide indicates the end of the reaction. The reaction mixture is cooled for 2 h at 0°C, the succinimide is filtered off and washed with cold CCl₄. The combined filtrates are concentrated in vacuo, and the resulting sensitive orange-brown oil is flash-chromatographed (CH₂Cl₂), giving a clear oil which crystallizes overnight at -15°C, colorless needles. Yield 890 mg (83%), mp 58 -59°C. IR (cap. film) 1790s, 1780s, 1630s, 1465m, 1340s, 1290s, 1250s, 1190m, 1140m, 1045s, 970m, 935m, 860s, 840s, 800m, cm⁻¹. ¹H NMR (200 MHz, CDCl₃ & 0.09 (s, 9 H, CH₃), 1.2 (m, 2 H, H-2'), 4.2 (m, 2 H, H-1'), 5.16 (s, 1 H, H-3), 5.6 (s, 1 H, H-5). MS for C₉H₁₅BrO₃Si (279.205) m/z 251 (3), 249 (3), 236 (9), 234 (9), 208 (5), 206 (5), 170 (17), 138 (16), 136 (16), 125 (8), 101 (TMSE, 37), 73 (TMS, 100), 69 (27).

<u>5-Bromo-4-[pent-1-oxy]-2(5H) furanone (10e)</u> is prepared as 10d, light yellow oil, 72%. IR (cap.film) 2960s, 1790s, 1636s, 1466m, 1349s, 1289s, 1191m, 1142m, 1045s, 947m, 861s, cm⁻¹. ¹H NMR (200 MHz, CDCl₃) \approx 0.94 (t, ³J=8, 3 H, CH₃), 1.38-1.48 (m, 4 H, CH₂), 1.94 (m, 2 H, OCH₂CH₂), 4.11 (t, ³J=7, 1 H, OCH_AH_B), 4.12 (t, ³J=7, 1 H, OCH_AH_B), 5.14 (s, 1 H, H-3), 6.62 (s, 1 H, H-5). MS for C₉H₁₃O₃Br (249.1039) m/z 250 (0.5), 249 (1), 248 (0.5), 200 (12), 168 (95), 100 (6), 99 (100), 71 (22), 69 (49).

 $\frac{4-\text{Acetoxy-5-bromo-2(5H) furanone (10h)}}{\text{IR 1800s, 1750w, 1720w, 1630m, 1165s, 1130s, 1040s, cm^{-1}. ^{1}\text{H NMR (90 MHz, CDCl}_3) & 2.37 (s, 3 H, OCH_3), 6.26 (d, J=0.5, H-3), 6.78 (d, J=0.5, H-5). MS for C₆H₅BrO₄ (221.00) m/z 141 (M⁺-Br, 23), 99 (14), 69 (49), 44 (100).$

<u>Coupling of Iodoaromatics with Bromobutenolides. Procedure for 5-(5-Benzenesulfonyloxy-3-benzyloxy-2-iodophenoxy)-4-[2-(trimethylsilyl)eth-1-oxy]-2(5H)furanone (17c). 1-Benzenesulfonyloxy-3-benzyloxy-5-hydroxy-4-iodobenzene¹¹ (6) (308 mg, 0.63 mmol) is dissolved in anhydrous acetone (20 ml) in a 25 ml flask. 5-Bromo-4-[2-(trimethylsilyl)eth-1-oxy]-2(5H)furanone (180</u> mg, 0.64 mmol) and K_2CO_3 (180 mg, 1.3 mmol) are added. The mixture is refluxed under N_2 for 14 h, and the solvent is evaporated under reduced pressure. Column chromatography (MTB/PE 1:1) affords **17c** as a light yellow, crystalline solid, 400 mg (93%), 52-54°C. IR (CHCl₃) 1790s, 1760m, 1640s, 1595m, 1450m, 1420m, 1380s, 1295m, 1195s, 1115s, 1000s, 860s, 840m, cm⁻¹. ¹H NMR (200 MHz, CDCl₃) s 0.1 (m, 9 H, SiCH₃), 1.18-1.24 (m, 2 H, SiCH₂), 4.12 (m, 2 H, OCH₂CH₂), 5.06 (s, 2 H, PhCH₂), 5.15 (s, 1 H, H-3), 5.82 (s, 1 H, H-5), 6.38 (d, ⁴J=2, 1 H, H-4'), 6.48 (d, ⁴J=2, 1 H, H-6'), 7.3-7.5 (m, 5 H, C₆H₅CH₂), 7.15-7.9 (m, 5 H, C₆H₅SO₃). ¹³C NMR (75.5 MHz, CDCl₃) s -1.45 (q, SiCH₃), 17.3 (t, SiCH₂), 71.36 (t, OCH₂CH₂), 72.07 (t, OCH₂Ph), 90.17 (s, C-I), 90.27 (d, C-3), 97.1 (d, C-5), 102.88 (d, C-4'), 103.677 (d, C-6'), 127.27-129.4 (10 d, 10 C), 134.633 (s, OCH₂CC₂), 135.583 (s, CSO₃), 151.17 (s, C-1'), 156.78 (s, C-3'), 158.255 (s, C-5'), 169.49 (s, C-4), 174.56 (s, C-2). MS (180°C) for $C_28H_29IO_8Si$ (680.5818) m/z 682 (0.5), 681 (1), 680 (2), 679 (5), 678 (14), 629 (5), 602 (6), 554 (19), 553 (32), 481 (12), 477 (18), 427 (23), 355 (8), 170 (11), 91 (100).

 $\frac{5-[o-Iodophenoxy]-4-[2-(trimethylsilyl)eth-1-oxy]-2(5H)furanone}{(17b)} is obtained as colorless tetragonal crystals, 95%, mp 62-63°C. IR (CHCl₃) 1790 s, 1760m, 1640s, 1480s, 1440m, 1400m, 1365s, 1300s, 1190m, 1150m, 1125m, 1080s, 1040m, 1025m, 1010s, 925m, 880m, 860m, 840s, cm⁻¹. ¹H NMR (200 MHz, CDCl₃) & 0.1 (m, 9 H, SiCH₃), 1.23 (m, 2 H, SiCH₂), 4.21 (dd, ³J=8, ²J=18, 1 H, OCH_AH_BCH₂), 4.24 (dd, ³J=8, ²J=18, 1 H, OCH_AH_BCH₂), 5.17 (d, ⁴J=0.5, 1 H, H-3), 6.03 (d, ⁴J=0.5, 1 H, H-5), 6.8-7.8 (m, 4 H_{arom}). MS (30°C) for C₁₅H₁₉IO₄Si (418.29) m/z 418 (19), 417 (3), 343 (2), 292 (3), 291 (1), 219 (C₆H₄IO, 100), 202 (1), 191 (2), 190 (1), 69 (45), 68 (29).$

Tributyltin Hydride-Mediated Cyclization. Photochemically-Induced Cyclization, AIBN Added.¹⁵ <u>3a-[2-(Trimethylsily)eth-1-oxy]-3a,8a-dihydrofuro[2,</u> 3b]benzofuran-2(3H)-one (18b). 5-[o-Iodophenoxy]-4-[2- (trimethylsily1)eth-1-oxy]-2(5H)furanone (420 mg, 1 mmol), AIBN (3 mg, 0.02 mmol) and Bu_3SnH (330 mg, 1.13 mmol) are dissolved in anhydrous benzene (100 ml) and introduced into the photoreactor (see above). The solution is flushed with N_2 , stirred vigorously and irradiated at 15°C for 20 h. The benzene is evaporated in vacuo, the resulting yellow residue is taken up in Et₂O (20 ml) and stirred vigorously with aqueous saturated NaF-solution (10 ml) for 20 h. The organic layer is separated, and the aqueous phase is re-extracted with Et_2O (3x20 mL). The combined organic layers are concentrated under reduced pressure and filtered through finely divided silica gel (flash gel, solvent Et_20) and evaporated to leave a yellow oil which is purified by chromatography (50 g of flashgel, PE, then CH_2Cl_2). The tributyltin containing compounds are collected in the PE-fractions as follows: 10 mg tributyl tinhydride, 25 mg 3-(tributylstannyl)-3a-[2-(trimethylsilyl)eth-1--oxy]-3a,8a-dihydrofuro[2,3b]benzofuran-2(3H)-one, 50 mg 5-[o-(tributy]stannyl)phenoxy]-4-[2-(trimethylsilyl)eth-1-oxy]-2(5H)furanone. The desired

product **18b** is collected in the CH_2Cl_2 -fractions, 155 mg, 53%.

 $\frac{3-(\text{Tributylstannyl})-3a-[2-(\text{trimethylsilyl})eth-1-oxy]-3a,8a-dihydrofuro[2,}{3b]benzofuran-2(3H)-one (19), 25 mg, 4%. IR (cap. film) 1800s, 1600m, 1465 s, 1250s, 1057s, 1007bs, 859s, 839s, cm⁻¹. ¹H NMR (200 MHz, CDCl₃) & -0.06 (m, 9 H, SiCH₃), 0.85 (t, ³J=8.5, 2 H, SiCH₂), 0.85-0.97 (m, 9 H, CH₂CH₃), 1.2-1.5 (m, 12 H, CH₂), 1.5-1.65 (m, 6 H, SnCH₂), 2.26 (m, 1 H, H-3), 3.18 (dt, ²J=8.5, ³J=8, 1 H, OCH_AH_B), 3.22 (dt, ²J=8.5, ³J=8, 1 H, OCH_AH_B), 6.2 (s, 1 H, H-8a), 6.95-7.4 (m, 4 H_{arom}). MS (40°C) for <math>C_{27H4604}SiSn$ (581.4335) m/z 422 (1), 420 (1), 365 (18), 361 (100), 359 (74), 357 (44), 304 (24), 289 (TBT, 24), 269 (44), 225 (45), 194 (23), 182 (43).

 $\frac{5-[o-(Tributylstannyl)phenoxy]-4-[2-(trimethylsilyl)eth-1-oxy]-2(5H)furanone (20), 50 mg (9%). IR (cap. film) 2873m, 2255w, 1796s, 1727s, 1477m, 1465s, 1289s, 1251m, 1074m, 999s, 839s. ¹H NMR (200 MHz, CDCl₃) & -0.06 (m, 9 H, SiCH₃), 0.8-1.0 (m, 11 H, CH₃, SiCH₂), 1.2-1.5 (m, 12 H, CH₂), 1.55-1.85 (m, 6 H, SnCH₂), 4.2 (m, 2 H, OCH₂), 5.31 (s, 1 H, H-3), 6.18 (s, 1 H, H-5), 6.95-7.75 (m, 4 H_{arom}). MS for <math>C_{27}H_{46}O_4SiSn$ (581.4335) m/z 361 (19), 269 (19), 267 (7), 170 (100), 168 (46), 140 (13).

Palladium-Mediated Cyclization. Dihydrofuro-3a-methoxy [2,3b]benzofuran-2(3H)-one (18a). 5-[o-Iodophenoxy]-4-methoxy-2(5H) furanone (17a) (340 mg, 1.0 mmol) in 5 ml of anhydrous DMF, sodium formate (100 mg, 1.44 mmol), anhydrous tetra-n-butylammonium chloride (TBACl) (400 mg, 1.44 mmol) and bis(acetonitrile)palladium dichloride (20 mg, 0.077 mmol) are introduced into a 10 ml round-bottomed flask under N₂. The solution is stirred under N₂ and r.t. for 10 min. The light brown clear solution is heated within 3 min to 90°C. Within 15 min the solution turns darkbrown and finely-divided palladium is precipitated. After 30 min at 90°C the solution is cooled to r.t., and 20 mL of water is added. The cloudy brown suspension is extracted with CH₂Cl₂ (4x10 ml), the organic layer is washed with water (2x10 ml) and dried (MgSO₄). The solvent is evaporated under reduced pressure, leaving a brown oil which is chromatographed (MTB/PE 1:1) to give feathery needles of 18a (120mg, 57%), mp 79°C. IR (CHCl₃) 1800s, 1615w, 1600m, 1475s, 1330m, 1270m, 1170s, 1105m, 1015s, 975s, 910s,840w, cm⁻¹. ¹H NMR (200 MHz, CDCl₃) \approx 3.12 (s, 3 H, OCH₃), 3.18 (dd, ²J=18, 2 H, H-3), 6.28 (s, 1 H, H-3a), 6.95-7.42 (m, 4 H_{ar om}). MS for C₁₁H₁₀O₄ (206.19995) m/z 206 (M⁺, 16), 176 (100), 106 (2), 149 (3), 121 (7), 118 (8), 84 (5), 77 (6), 65 (5). Tricycle 18b is obtained by the same procedure, colorless oil (58%), spectroscopic data (cf. above).

<u>6-Benzenesulfonyloxy-4-benzoxy-3a-[2-(trimethylsilyl)eth-1-oxy]-3a,8a-di-hydrofuro[2,3b]benzofuran-2(3H)-one</u> (18c). 5-(5-Benzenesulfonyloxy-3-benzyloxy-2-iodophenoxy)-4-[2-(trimethylsilyl)eth-1-oxy]-2(5H)furanone (17c) (680 mg, 1.0 mmol), sodium formate (120 mg, 1.76 mmol), TBACl (500 mg, 1.75 mmol) are dissolved in anhydrous DMF (4 ml) under N₂. Pd(MeCN)₂Cl₂ (30 mg, 0.11 mmol) in DMF (1 ml) are syringed in and the resulting clear light brown solution is stirred at 50°C (contact thermometer). After 14 h all palladium has been precipitated, the solution is concentrated under reduced pressure (1 mbar), and the resulting black residue is chromatographed (MTB/PE 1:1). Product 18c is obtained as a colorless oil, and educt 17c (510 mg) is recovered. Yield: 80 mg (57% at 25% conversion). IR (CHCl₃) 1801s, 1613s, 1490w, 1450w, 1434 m, 1381s, 1290w, 1251s, 1112m, 1091s, 1003s, cm⁻¹. ¹H NMR (200 MHz, CDCl₃) \approx 0.00-0.08 (m, 9 H, SiCH₃), 0.92 (t, ³J=8, 2 H, SiCH₂), 3.16 (d, ²J=18, 1 H, H_B-3), 3.37 (dt, ³J=8, ²J=8.5, 1 H, OCH_AHCH₂), 3.47 (dt, ³J=8, ²J=8.5, 1 H, OCH_BCH₂), 3.5 (d, ²J=18, 1 H, H_A-3), 5.1 (s, 2 H, PhCH₂), 6.24 (s, 1 H, H-8a), 6.3 (d, ⁴J=2, 1 H, H-5), 6.48 (d, ⁴J=2, 1 H, H-7), 7.4-7.5 (m, 5 H, C₆H₅CH₂), 7.55-7.96 (m, 5 H, PhSO₃). MS (140°C) for C₂₈H₃₀O₈SSi (554.6917) m/z 555 (1), 554 (2), 553 (7), 437 (14), 347 (15), 279 (29), 166 (49), 149 (180), 91 (100).

<u>1-Acetyl-5-bromo-4-methyl-1,5-dihydropyrrol-2-one (22)</u> is obtained as described for **10d**, orange-colored oil (>90%). IR (CHCl₃) 1750s, 1710s, 1640m,

1385m, 1370m, 1340m, 1305s, 1280m, 1130m, 975m, 860m, cm⁻¹. ¹H NMR (90 MHz, CDCl₃) & 2.24 (dd, J=1.3, J=0.6, 3 H, CH₃), 2.54 (s, 3 H, COCH₃), 5.97 (q, J=1.3, 1 H, H-3), 6.45 (bs, 1 H, H-5). MS for C₇H₈BrNO₂ (218.11) m/z 138 (M⁺-Br, 60), 96 (100), 68 (23), 44 (25).

<u>1-Acetyl-5-(2-iodoanilino)-4-methyl-1,5-dihydropyrrol-2-one (23).</u> 2-Iodoaniline (21) (660 mg, 3 mmol) and finely powdered K_2CO_3 (550mg, 4 mmol) in anhydrous acetonitrile (5 ml) are stirred for 30 min. Bromolactam 22 (1.1 g, 5 mmol) in acetonitrile (2 ml) is added with a perfusor and stirring within 6 h under N₂. After being stirred for 20 h, the mixture is filtered through silica gel (MTB). The solvent is evaporated and the remaining crude oil is flash-chromatographed (silica gel, MTB/PE 1:2). Besides educt 21 the aminal 23 is isolated. Yield: 780 mg (73%, 89% w.r.t. conversion of iodoaniline), mp 128-130°C. IR (CHCl₃) 3390bs, 1730s, 1695s, 1645w, 1585m, 1510m, 1460m, 1375m, 1335s, 1310s, 1270m, 1150m, cm⁻¹. ¹H NMR (300 MHz, CDCl₃) & 2.11 (s, 3 H, CH₃), 2.5 (s, 3 H, COCH₃), 4.88 (d, J=7, 1 H, NH), 5.89 (d, J=7, H-5), 6.0 (s, 1 H, H-3), 6.5-7.72 (m, 4 H_{arom}). ¹³C NMR (75.5 MHz, CDCl₃) & 14.09 (q, CH₃), 24.62 (q, COCH₃), 72.82 (d, C-5), 87.38 (s, C-2'), 113.36 (d, C-6'), 121.13 (d, C-4'), 122.74 (d, C-3), 129.25 (d, C-5'), 139.38 (d, C-3'), 144.19 (s, C-1'), 168.56 (s, COCH₃), 169.79 (s, C-2). MS (60°C) for C₁₃H₁₃IN₂O₂ (356.16) m/z 356 (M⁺, 100), 313 (20), 229 (2), 218 (40), 160 (26), 149 (67), 134 (9), 96 (100), 71 (12), 57 (16), 44 (20). Anal. Calcd for C₁₃H₁₃IN₂O₂: C, 43.84; N, 7.87; H, 3.68. Found: C, 43.86; N, 7.79; H, 3.69.

<u>1-Acetyl-3a-methyl-3,3a,8,8a-tetrahydropyrrolo[2,3b]indol-2-one (24).</u> <u>BU₃SnH-Method (cf. ref. 11).</u> Yield 80 mg (70%), mp 86-87°C. IR 3450b, 1740 s, 1690s, 1610m, 1485s, 1470m, 1370s, 1295s, 1250s, 1110m, cm⁻¹. ¹H NMR (300 MHz, CDCl₃) & 1.49 (s, 3 H, CH₃), 2.48 (s, 3 H, OCH₃), 2.90 (dd, ²J=-18, 2 H, H-3), 5.15 (bs, NH), 5.50 (d, J=1.5, 1 H, H-8a), 6.59 -7.13 (m, 4 H_{arom}). ¹³C NMR (75.5 MHz, CDCl₃) & 25.25 (q, CH₃), 25.31 (q, COCH₃), 44.42 (s, C-3a), 45.67 (t, C-3), 82.37 (d, C-8a), 109.34 (d, C-7), 119.55 (d, C-5), 122.87 (d, C-6), 128.87 (d, C-4), 133.20 (s, C-3b), 147.25 (s, C-7a), 172.59 (s, COCH₃), 173.47 (s, C-2). MS for $C_{13}H_{14}N_{2}O_{2}$ (230.39) m/z 230 (M⁺, 30), 200 (11), 188 (6), 160 (8), 144 (11), 130 (6), 120 (4), 118 (5), 87 (13), 85 (74), 48 (18). Anal. Calcd for $C_{13}H_{14}N_{2}O_{2}$: C, 67.81; N, 12.17; H, 6.31. Found: C, 67.60; N, 11.60; H, 6.22. <u>Palladium-Method (cf. ref. 11)</u>. Yield 97%, spectroscopic data see above.

<u>3a-Methyl-3,3a,8,8a-tetrahydropyrrolo[2,3b]indol-2-one (25).</u> Tricycle 24 (230 mg, 1 mmol), silica gel (2 g) are stirred for 6 d in dry methanol at r.t. The silica gel is filtered off and rinsed thoroughly with acetone. After evaporation of the solvents product 25 is obtained as a colorless solid, 170 mg (90%), mp 166-168 °C. IR 3450b, 1690s, 1610w, 1485m, 1470w, 1100m, 1075m, cm⁻¹. ¹H NMR (300 MHz, CDCl₃) \approx 1.49 (s, 3 H, CH₃), 2.68 (dd, ${}^{2}J=18$, 2 H, H-3), 4.44 (bs, NH), 5.08 (s, 1 H, H-8a), 6.48 (bs, NH), 6.63-7.64 (3m, 4 H_{arom}). ¹³C NMR (75.5 MHz, CDCl₃) \approx 25.65 (q, CH₃), 43.96 (t, C-3), 49.79 (s, C-3a), 79.37 (d, C-8a), 110.43 (d, C-7), 120.07 (d, C-5), 123.13 (d, C-6), 128.63 (d, C-4), 135.12 (s, C-3b), 147.29 (s, C-7a), 176.79 (s, C-2). MS (150°C) for C₁₁H₁₂N₂O (188.35) m/z 188 (M⁺, 100), 160 (63), 146 (43), 145 (40), 144 (52), 130 (35), 105 (19), 77 (26), 55 (17).

References and Notes

Dedicated in Honor of Günther Ohloff on the Occasion of his 65th Birthday, July 21, 1989

* Abstracted in part from a lecture delivered at the International Symposium on Agricultural and Biological Aspects of Aflatoxin Related Health Hazards, New Dehli, India, March 22-25, 1989.

- (1) (a) Bioactive Molecules, Vol. 1. Mycotoxins and Phycotoxins. Steyn, P.S.; Vleggaar, R., editors. Elsevier, Amsterdam, 1986. (b) Mykotoxine in Lebensmitteln, J. Reiss, ed. G. Fischer Verlag, Stuttgart 1981. (c) van Egmond, H.P.; Stavenuiter, J.F.C. *Tijdschrift voor Diergeneeskonde* 1985, 110, 1002. (d) ca \$ 206/0.05 mg, Sigma Chemie, GmBH
- Büchi, G.; Weinreb, S.M. J.Am.Chem.Soc. 1969, 91, 5408. Büchi, G.; Weinreb, S.M. J.Am.Chem.Soc. 1971, 93, 746.
- (3) Büchi, G.; Liesch, J.M.; Francisco, M.A.; Schuda, P.F. J.Am.Chem. Soc. 1981, 103, 3497.
- (4) Schuda, P.F. Top.Curr.Chem. 1980, 91, 75.
- (5) Sánchez-Obregón, R.; Hurtado, G.; Barrios, H.; Ortiz, B.; Yuste, F. Org.Prep.Proced.Int. **1986**, 18, 145.
- (6) Kampouris, E.M. J.Chem.Soc. 1965, 2651.
- (7) Boll, P.M.; Reffstrup, T.; Schnedler Wengel, A. Tetrahedron 1979, 35, 2181.
- (8) Zimmer, H.; Amer, A.; Pham, C.V.; Grob Schmidt, D. J.Org.Chem. 1988, 53, 3368.
- (9) Reffstrup, T.; Boll, P.M. Phytochemistry 1979, 18, 325.
- (10) Cuevas, J.C.; Quesnelle, C.; Sloan, C.P.; Snieckus, V. Tetrahedron Lett. 1988, 29, 4685. Snieckus, V. Bull.Chim.Soc.Fr. 1988, 67-68.
- (11) Wolff, S.; Hoffmann, H.M.R. Synthesis 1988, 760.
- (12) Wolff, S. Ph.D. Thesis, University of Hannover, 1988.
- (13) Oku, A.; Harada, T.; Kita, K. Tetrahedron Lett. 1982, 23, 681.
- (14) Shishido, K.; Shitara, E.; Komatsu, H.; Hiroya, K.; Fukumoto, K.; Kametani, T. J. Org. Chem. 1986, 51, 3007.
- (15) Stork, G.; Baine, N.H. J.Am.Chem.Soc. 1982, 104, 2321.
- (16) Clauß, K. Tetrahedron Lett. **1974**, 14, 1271. Plieninger, H.; Decker, M. Liebigs Ann. Chem. **1956**, 598, 205.